Decision-Making with Predictive ADME Data in Context of Experimental Variability

Brian E. Mattioni, Ph.D., Principal Scientist
Computational/Preclinical ADME
Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism
Merck Research Laboratories
Mindset shift towards synergistic in silico↔in vitro↔in vivo design cycles and focus on property space enrichment
 - re: *in silico*, progress beyond calculated physchem properties (when appropriate)

Experimental variability and an argument on why we need to reset expectations of *in silico* (& *in vitro*) ADME models (especially with N=1 screening data)

Examples of real-time, prospective decision-making with Predictive ADME data at the design stage
In silico ↔ in vitro ↔ in vivo design cycles
~ as early as possible, at the chemotype level ~

Harness information from *in silico* and *in vitro* and *in vivo* assays to maximize information content from each design cycle

Consider more often
How can I trust and proactively use *in silico* ADME models for virtual & experimental design?

- **Iterative design/learning cycles are key**
 - Builds trust in the *prospective* ability of models for contemporary SAR space
 - Helps understand model strengths/limitations
 - If global model validation has been robust throughout time, a certain degree of trust exists in using proactively as hypothesis “generators” earlier rather than later (typical of models for *in vitro* endpoints)
 - For models built with *in vivo* PK data, frequent learning cycles are a must

Capitalize on where the models work and exploit strengths
(spend less time figuring out why they shouldn’t be used)
Setting realistic expectations for *in silico* ADME models

When performing “predicted vs. measured” analyses...acknowledge experimental variability

\[
\text{Error}_{\text{total}} = \text{Error}_{\text{model}} + \text{Error}_{\text{experimental}}
\]

This is not zero!

In vitro/in vivo methods still only provide an estimate of “truth”

As most screening data stand today, building those elusive models with \(R^2=0.8\) or \(\text{RMSE}=0.1\) is simply not realistic
P_{app} \textit{in silico} model prospective validation

Quantitative view

Is this model “predictive”?

\[R^2 \approx 0.60 \]

$N = 7518$ compounds

Raw-scale ($\times 10^{-6}$ cm/s)
P_{\text{app}} data reproducibility/variability

- plot of run1 vs run2 for repeat measurements -

\[R^2 \sim 0.60 \]

N = 352 compounds

Raw-scale (x10^{-6} cm/s)
Large majority of repeat measurements were within 2-fold of the original indicating the assay is robust, reproducible, and enables decision-making (just not as quantitatively delineating as most scientists think or want)
P_{app} \textit{in silico} model prospective validation

Quantitative view

\[R^2 \sim 0.60 \]
N = 7518 compounds
Raw-scale (x10^{-6} \text{ cm/s})
P_{app} in silico model prospective validation

Quantitative view

\[R^2 \approx 0.60 \]
N = 7518 compounds
Raw-scale (x10^-6 cm/s)
Qualitative view (same data as last slide)

Predicted vs measured P_{app} categories for the last 7,518 compounds tested with control BA/AB ratios between {0.5-2.0}

Design Guidelines:

in silico $P_{app} \leq 5$ {deprioritize}

5 < *in silico* $P_{app} \leq 20$ {indeterminate}

in silico $P_{app} > 20$ {prioritize}
Rat CL_{plasma} \textit{in silico} model demonstrates robust categorical enrichment.

Predicted Rat \textit{in vivo} CL_{plasma} category

- **Represents \sim 1 years worth of PK data**

<table>
<thead>
<tr>
<th>Category</th>
<th>% of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \leq 21.00)</td>
<td>15.0%</td>
</tr>
<tr>
<td>(21.00 < x \leq 63.00)</td>
<td>47.7%</td>
</tr>
<tr>
<td>(63.00 < x)</td>
<td>74.2%</td>
</tr>
</tbody>
</table>

Design Guidelines:

- \textit{in silico} Rat \textit{in vivo} CL_{plasma} \leq 21 \{prioritize\}
- \(21 < \textit{in silico} \textit{in vivo} CL_{plasma} \leq 63\} \{indeterminate\}
- \textit{in silico} Rat \textit{in vivo} CL_{plasma} > 63 \{deprioritize\}
Are better decisions made when *in silico* data are included in the thought process?

- This should be the question asked of any model
- Specifically with respect to *in silico* ADME models:
 - Shift focus to **property space enrichment** and rank-ordering
 - Absolute accuracy (*e.g.*, RMSE) or correlation (*e.g.*, \(R^2 \)) is less important … **since we’re not replacing measured data**
 - If *in cerebro* (+ *in silico*) enriches the decision-making process at the design stage … apply!

Models prolong the shelf-life of data & each is a summary of our “experience” with a given biological endpoint

Why not use them to our advantage?
Progressing beyond calculated physchem properties…QSAR (often) provides higher granularity

Rat P-gp substrate recognition

- **N = 355**
 - $PPV = \sim 96\%$

- **N = 1911**
 - $NPV = \sim 84\%$

- **N = 1110**

Predicted rat P-gp category

- **N = 1533**
 - $PPV = \sim 62\%$

- **N = 564**
 - $NPV = \sim 74\%$

- **N = 1279**

Merck

Be well
A QSAR model (often) offers higher granularity when compared to a calculated physchem property

~ Trade-off between interpretability & accuracy acknowledged ~

Solution: use both to your advantage at design
• **Mindset shift** towards synergistic *in silico*↔*in vitro*↔*in vivo* design cycles and focus on property space enrichment
 – re: *in silico*, progress beyond calculated physchem properties (when appropriate)

• **Experimental variability** and an argument on why we need to reset expectations of *in silico* (& *in vitro*) ADME models (especially with N=1 screening data)

• **Examples** of real-time, prospective decision-making with *Predictive ADME* data at the design stage
• **Premise**, can we exploit the strengths (i.e., predicting inactivity) of our *in silico* ADME models to advance compounds faster down the flow-scheme?

• Get to the more informative experiments faster

• Teams have full autonomy to decide how much risk (if any) is taken based on risk-reward cutoffs

DOI: 10.1021/ci500666m
Future: Adaptive & Probabilistic Screening Funnels

- Adapt compound flow through assays to de-risk early, but be thoughtful to maximize information gain (take risk where appropriate)
- Bring a more proactive & holistic approach to design aspects (instead of reactive)
- Cheminformatics tools needed for data management and handling logistics

Linear & binary view of the funnel

Adaptive & probabilistic

obtain crucial data sooner

accelerate promising candidates

don't make compounds with low POS
The Z-score is the ratio of the difference between the prediction and the threshold divided by the uncertainty of the prediction:

\[Z\text{-score} = \frac{(\text{Prediction} - \text{threshold})}{\text{Prediction RMSE}} \]

Quantifying the likelihood of activity: Prediction + confidence → “Z-score”
Prospective validation of the probabilistic confidence metric

- The probability of being **active** (IC50 < 10 µM) vs. **inactive** is a function of the Z-score metric

![Graphs showing the probability of CaV1.2 and CYP 3A4 inhibition vs. Z-score.](image)
Prediction and confidence can be converted into risk/reward profiles

- By testing only compounds with very low probability of activity, few false negatives will result, but benefit will be modest also.

- As we increase the probability threshold, the benefits increase along with the false negative rate.

Risk/reward profiles can differ for each assay, per project, per chemical series.

Confidence cutoff of 0.0: 60% benefit, but ~13% false negative rate.

Confidence cutoff of 2.0: <10% benefit.

Confidence cutoff of Z-score = 0.5: Good compromise?
Workflow for *in silico* counterscreening on a Discovery project

1. Mine predicted versus observed data
2. Determine risk/reward profile
3. Set rules to be applied to each counterscreen assay

Revisit as needed

Repeat weekly

- **Compound predicted active?** Screen
- **Compound predicted inactive but with insufficient confidence?** Screen
- **Compound of high interest?** Screen
- **Compound randomly selected (to assure model quality and monitor predictivity)** Screen
- **Large discrepancy between pred and exp n=1?** (Re-) Screen
- ...otherwise Defer screen

Request additional compounds/assays as needed
eCS Workbench

- Automates the process of examining chemical series for predictivity and setting appropriate rules

eCS rule-setting:
Which models are working on my project, and what are the decision rules for testing/deferring?

eCS submission:
View, adjust, and submit weekly testing choices
Two project-specific case studies that demonstrate...

- Establishing & utilizing in silico ↔ in vitro ↔ in vivo connectivity at the molecular & experimental design stages

- Exploiting the strengths of both in silico and in vitro models to prioritize synthesis and testing

- Prioritizing chemical synthesis using both calculated physchem props and QSAR predictions for CL_{int}/P-gp substrate recognition

- Probabilistic approach to “design”
Project-specific case study #1

circa 2013-14, IVIVC established & utilized routinely

circa 2014-15, intentional drive to bring a holistic ISIVIVC perspective to design
Usable IVIVC established for both Lead series

- Usable IVIVC in rat for both lead series.
- Robust correlation between human LM and rat LM \(\text{in vitro} \) \(\text{CL}_{\text{int,u}} \)

88% of compounds with \(\text{in vitro} \) \(\text{CL}_{\text{int,u}} \) > 400 have an \(\text{in vivo} \) \(\text{CL}_{\text{int}} \) > 1000

Design guidance:
Rat mic. \(\text{in vitro} \) \(\text{CL}_{\text{int}} \) > ~400 mL/min/kg {deprioritize}
Microsomal CL_{int} Prospective Validation
~ robust enrichment demonstrated by \textit{in silico} models ~

Design guidance:
- Rat mic. \textit{in silico} $\text{CL}_{\text{int}} < \sim 200 \text{ mL/min/kg}$
- Human mic. \textit{in silico} $\text{CL}_{\text{int}} < \sim 100 \text{ mL/min/kg}$

- For a QD drug, target human \textit{in vitro} $\text{CL}_{\text{int}} < 100 \text{ mL/min/kg}$
P-gp Sub. Recognition Prospective Validation
~ robust enrichment demonstrated by *in silico* models ~

Design guidance:
- Rat P-gp ER < 1.5 (prioritize)
- Rat P-gp ER > 4 (deprioritize)

Design guidance:
- Human P-gp ER < 1.5 (prioritize)

- Models showed robust enrichment on the extremes of the BA/AB ratio scale (*i.e.*, *bonafide* P-gp substrates/nonsubstances)
Multiparameter Optimization (MPO) scoring function used at molecular design

Strategy: use a 10-pt MPO scoring approach to triage synthetic targets

- 6-pt CNS MPO*:
 - cLogP \(\leq 3 \), \{3-5\}, >5
 - cLogD \(\leq 2 \), \{2-4\}, >4
 - MW \(\leq 360 \), \{360-500\}, >500
 - PSA \(\leq 20 \), \{20-40\}, \{40-90\}, \{90-120\}, >120
 - HBD \(\leq 0.5 \), \{0.5-3.5\}, >3.5
 - \(pK_{a_{\text{basic}}} \) \(\leq 8 \), \{8-10\}, >10

- Combined with internal models for human/rat microsomal intrinsic clearance and P-gp substrate recognition

Standing the test of time...prospective (& automated) spot-checks are useful

Since January 1, 2015

- Rat
 - ~89% PPV* (30 of 44 predictions confirm experimentally)
 - ~68% NPV* (30 of 44 predictions confirm experimentally)

- Human
 - ~88% PPV* (108 of 123 predictions confirm experimentally)
 - ~68% NPV* (30 of 44 predictions confirm experimentally)

*PPV – positive predicted value (given positive prediction, % confirm experimentally)
*NPV – negative predicted value (given negative prediction, % confirm experimentally)
Project-specific case study #2

Team established & used *in silico*↔*in vivo* connectivity

IVIVC disconnected
Early on, in vivo unbound clearance (CL\textsubscript{u}) was trending high for the Lead series.

- In vitro data tended to under-predict in vivo CL\textsubscript{u}.

Initial IVIVC snapshot

- RAT \textit{in vitro} hepatocyte CL\textsubscript{int,u}
- RAT in vivo CL\textsubscript{u}

Initial ISIVC snapshot

- Predicted RAT in vivo CL\textsubscript{u}
- RAT in vivo CL\textsubscript{u}
In an effort to improve both IVIVC and ISIVC, a virtual library was designed where...

...in silico models for rat in vivo CL_{u} and in vitro CL_{int} were used to prioritize chemical synthesis (pink)
Tracking progress... circa May, 2015
ISIVC solidified & expanded, IVIVC strengthened

Initial ISIVC snapshot

Initial IVIVC snapshot

May, 2015 ISIVC snapshot

May, 2015 IVIVC snapshot
Take home

- **Find synergy** between *in silico*, *in vitro*, and *in vivo* data & exploit where *in silico*/*in vitro* models work

- **Experimental variability** should be taken into account when building/validating *in silico* ADME models (especially with N=1 screening data)

- Think **enrichment**!

- *Predictive ADME* data can be used to **augment real-time, prospective decisions** at the design stage
Acknowledgements

Structural Chemistry
Michael Altman
Chris Culberson
Hakan Gunaydin
Prabha Karnachi
Daniel McMasters
John Sanders
Bob Sheridan
Deping Wang
Li Xiao

PPDM (DMPK)
Tjerk Bueters
Kerry Fillgrove
Chris Gibson
Iain Martin
Karsten Menzel
Sue Hill

Discovery Chemistry
Doug Beshore
Chris Burgey
Mike Ellis
Iyassu Sebhat
Abbas Walji